
Improving Efficiency and Accuracy in
Multilingual Entity Extraction

Joachim Daiber
Computational Linguistics
Rijksuniversiteit Groningen

Groningen, The Netherlands
daiber.joachim@gmail.com

Max Jakob
Neofonie GmbH

Robert-Koch-Platz 4
10115 Berlin, Germany

max.jakob@neofonie.de
Chris Hokamp

Lang. and Inf. Technologies
University of North Texas

Denton, TX, USA
chris.hokamp@gmail.com

Pablo N. Mendes
Kno.e.sis Center, CSE Dept.

Wright State University
Dayton, OH, USA

pablo@knoesis.org

ABSTRACT
There has recently been an increased interest in named en-
tity recognition and disambiguation systems at major con-
ferences such as WWW, SIGIR, ACL, KDD, etc. However,
most work has focused on algorithms and evaluations, leav-
ing little space for implementation details. In this paper,
we discuss some implementation and data processing chal-
lenges we encountered while developing a new multilingual
version of DBpedia Spotlight that is faster, more accurate
and easier to configure. We compare our solution to the
previous system, considering time performance, space re-
quirements and accuracy in the context of the Dutch and
English languages. Additionally, we report results for 7 ad-
ditional languages among the largest Wikipedias. Finally,
we present challenges and experiences to foment the dis-
cussion with other developers interested in recognition and
disambiguation of entities in natural language text.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—language models, text analysis; H.3.1 [Information
Storage and Retrieval]: Content Analysis—linguistic pro-
cessing

General Terms
Algorithms, Performance

Keywords
Named Entity Recognition, Entity Linking, Information Ex-
traction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
I-SEMANTICS 2013, 9th Int. Conf. on Semantic Systems, Sept. 4-6, 2013,
Graz, Austria
Copyright 2012 ACM 978-1-4503-1972-0 ...$10.00.

1. INTRODUCTION
DBpedia Spotlight [3] is an open source project develop-

ing a system for automatic annotation of DBpedia entities in
natural language text. It provides programmatic interfaces
for phrase spotting (recognition of phrases to be annotated)
and disambiguation (entity linking) as well as various output
formats (XML, JSON, RDF, etc.) in a REST-based web ser-
vice. The standard disambiguation algorithm is based upon
cosine similarities and a modification of TF-IDF weights (us-
ing Apache Lucene1). The main phrase spotting algorithm is
exact string matching, which uses LingPipe’s2 Aho-Corasick
implementation.

The project has focused initially on the English language.
However, since DBpedia Spotlight’s models are learned from
Wikipedia, it should be possible to adapt the system to any
other language that has a Wikipedia edition. In addition, al-
though fairly intensively used by researchers3 and others,4,5

the current implementation can be improved in certain as-
pects.

In this paper, we describe how we enhanced the perfor-
mance and accuracy of our entity recognition and disam-
biguation components and discuss challenges encountered
while adapting DBpedia Spotlight to work with other lan-
guages. For this experiment, we focused on the Dutch lan-
guage. As a result, we present a new version of the system,
which is faster, more accurate and improves the ease of in-
ternationalization. Demonstrations of internationalized ver-
sions are provided in English and Dutch and models for 7
additional languages are made available via the supporting
material for this submission.

2. IMPLEMENTATION

2.1 Phrase Spotting
Phrase spotting is the task of finding phrases in a text

that later should be linked to DBpedia entities. The stan-

1http://lucene.apache.org/
2http://alias-i.com/lingpipe
3As of the time of writing, Google Scholar reports 108 cita-
tions to the main DBpedia Spotlight article.
4http://bit.ly/A6RE27
5http://git.io/qB3n6g

http://lucene.apache.org/
http://alias-i.com/lingpipe
http://bit.ly/A6RE27
http://git.io/qB3n6g

dard phrase spotting algorithm used by DBpedia Spotlight is
very light on its NLP demands, only requiring one language-
dependent step: tokenization. Recognition of spot candi-
dates is then performed by substring matching using a kind
of prefix tree and the Aho-Corasick algorithm.
Our goal is to have the best possible phrase spotting qual-

ity and time performance with little memory overhead. Pre-
vious work [2] showed increased precision when using NLP-
informed phrase spotting methods. Therefore, we developed
a Spotter that proceeds in two steps.
First step:. In the first step, candidates for possible an-

notations are generated. There are two implementations
of this step. In the language-independent implementation,
the candidates are generated by traversing a finite state au-
tomaton encoding all possible sequences of tokens that form
known spot candidates.
In the language-dependent implementation, candidates are

generated using three methods: 1. identifying all sequences
of capitalized tokens, 2. identifying all noun phrases, prepo-
sitional phrases and multi word units, 3. identifying all named
entities. Methods 2 and 3 are performed using Apache
OpenNLP6 models for phrase chunking and Named Entity
Recognition.
For English and German, all required OpenNLP mod-

els are readily available. For Dutch, we created a chun-
ker model from the Lassy Small corpus, a corpus of Dutch
language texts with automatic syntactic annotations which
were manually corrected [5]. The resulting phrase chun-
ker detects Noun Phrase chunks (NP), Prepositional Phrase
chunks (PP) and Multi Word Units (MWUs). We use this
model in addition to the publicly available Dutch Named
Entity Recognition models.
Second step:. As our goal is to achieve the best pos-

sible precision, the second step selects the best candidates
from the set of phrases generated in step 1. First, over-
laps in the candidates are resolved based on a score and
a preference-based choice for the method that generated
them.7 Second, all candidates that fall below a specified
score threshold are removed. We compute the score for each
spot candidate as a linear combination of features, since this
gives us flexibility in treating certain kinds of phrases dif-
ferently. One of our features is the annotation probability
P (annotation|s). Given a set of mentions of article links
e with anchor text s (spot), we estimate the annotation
probability as: P (annotation|s) =

∑
e count(e, s)/ count(s).

We identified several cases of phrases where this annota-
tion probability is consistently lower than the general case.
Acronyms are one example of this phenomenon (e.g. ‘AIG’,
‘IBM’). Hence, we add binary features that are triggered for
these kinds of cases to produce the overall score. We de-
termine the weights for the components of this score from
held-out data via linear regression. This method provides
the additional advantage of automatically estimating the op-
timal cut-off threshold from the data.

2.2 Disambiguation
Disambiguation in our build is performed using the gen-

erative probabilistic model from [1]. The score for an entity
e given the phrase s and context c is calculated as a com-
bination of P(e), P(s|e) and P(c|e). The combination can

6http://opennlp.apache.org/
7In the order PER≻ORG≻LOC≻MISC≻NP≻MWU≻PP≻FSA lookup≻
Capitalized Sequence.

be either a linear regression mixture or, in accordance with
the generative model, the product of the individual values.
Given the Wikipedia data set M consisting of article links
with their anchor texts and textual context, we estimate the
required probability distributions from the raw counts using
the maximum likelihood approach presented in [1]. PLM(t)
is the smoothed unigram language model estimated over all
tokens in the data set and weighed by the parameter λ whose
value we adopted from [1].

P (e) =
count(e)

|M | (1)

P (s|e) = count(e, s)

count(e)
(2)

P (c|e) = Pe(t1) · Pe(t2) · Pe(t3) · ... · Pe(tn) (3)

Pe(t) = λPe ML(t) + (1− λ)PLM(t) (4)

Pe ML(t) =
counte(t)∑
t counte(t)

(5)

In this generative model, probabilities are negligibly small
and are represented in logarithmic space to avoid under-
flows. To produce a more useful score for each entity, we
normalize the score via the softmax function and obtain a
final disambiguation score between 0.0 and 1.0.

For each phrase and its surrounding context tokens, we
further generate a NIL entity, which represents the hypoth-
esis that the context and phrase were not generated by any
known entity. We use the formulas for P (NIL), P (s|NIL) and
P (c|NIL) from [1] to calculate the score for the NIL entity.
All entity candidates with a lower score than the NIL entity
are removed.

P (NIL) =
1

|M | (6)

P (s|NIL) =
∏
t∈S

PLM(t) (7)

P (c|NIL) =
∏
t∈C

PLM(t) (8)

As above, PLM is the smoothed general language model
probability of a token that we estimate over all tokens im-
ported to the system as context of an entity mention.

2.3 Indexing
The indexing process of our model consists of two phases:

First, we collect the raw counts necessary for our models
from Wikipedia. Some language-dependent pre-processing
is performed, including stemming and the removal of stop-
words. We use PigNLProc,8 a collection of Pig Latin scripts
and utilities focused on Wikipedia and DBpedia that we
adapted for this work. Apache Pig is part of the Hadoop
ecosystem, providing a high-level abstraction of MapReduce
using an SQL-like syntax. In the second step, the raw counts
are serialized into efficient data structures that the system
can de-serialize at runtime. This step can be performed on
a commodity PC and takes a few minutes for Dutch and 1-2
hours for the English version.

For the annotation probability, we must find count(s), the
total number of string occurrences of a phrase in the corpus.
Since performing a string search for each possible phrase in
the entire corpus is not feasible, we collect all n-grams (where

8https://github.com/dbpedia-spotlight/pignlproc/

http://opennlp.apache.org/
https://github.com/dbpedia-spotlight/pignlproc/

n is a parameter set to 5 by default) in the corpus and in
order to obtain the number of times s has occurred, we in-
tersect this set with the set of known phrases. This simpli-
fication makes the process feasible but also introduces lim-
itations: phrases with more than n tokens are not counted
and phrases with more than one token can contain other
phrases as substrings (e.g. “Apple MacBook” and “Apple”),
which skews the counts of these substring phrases. In our
system, we correct the latter issue by subtracting the counts
of phrases from the total counts of their phrase substrings.

2.4 Data Storage, Models and Configuration
When selecting our preferred data storage implementa-

tion, we considered the following criteria: compatibility with
the Apache 2.0 license, optimization for read operations,
type of data serialization, ease of integration and scalability.
While some full-fledged DBMS, such as Apache Cassandra9

met most of our criteria, we decided to use an in-memory
model efficiently serialized using Kryo,10 since this allows
maximum retrieval performance, high flexibility, smaller ex-
ternal dependencies and deliberate optimizations based on
our knowledge of the data. Optionally, JDBM311 can be
used for disk-based access on low memory systems. We
share our performance evaluations of suitable data storages
in the supporting material for this submission.12 To reduce
the complexity of the configuration, we introduced a self-
contained model directory structure that is produced by the
indexing module and can be run with no further configura-
tion using the DBpedia Spotlight server.

3. EVALUATION
Our aim was to produce a system providing easier and

faster indexing, faster and more accurate runtime perfor-
mance and simple internationalization. The evaluation was
carried out on our build as well as the current build of DBpe-
dia Spotlight for Dutch and English. We evaluated indexing
and runtime performance, phrase spotting and disambigua-
tion. Additional to English and Dutch, where we had previ-
ous systems to compare against, we provide these values for
7 additional languages.

3.1 Performance: Runtime and Footprint
Annotation time. To measure time performance (Ta-

ble 1), we annotated a small corpus of around 500 randomly
selected articles from the Reuters news corpus using both
systems with their default settings.13

Language Model Avg Total

Dutch
Our build 1.20s 601.39s
Current 9.52s 4758.31s

English
Our build 1.28s 640.2s
Current public endpoint 5.72s 2803.22s

Table 1: Performance evaluations

9http://cassandra.apache.org/
10http://code.google.com/p/kryo/
11https://github.com/jankotek/JDBM3
12http://git.io/xvzPGw
13Except for the current build of the English version marked
as Public endpoint, all tests were performed on the same
personal computer.

Disk and Memory Footprint. In Table 2, we report
the disk and memory footprint for our build and for two
versions of the current build: in Current (1), the candidate
index is kept in memory and the disambiguation index is on
disk while in Current (2) both indexes are loaded to memory.

Language Model Articles Disk Memory

Dutch
Our build

1.1m
489MB 1.9GB

Current (1) 2.1GB 2.4GB
Current (2) 2.1GB 14.6GB

English
Our build

4.1m
5.2GB 11.7GB

Current (1) 18.2GB 5.9GB

Table 2: Space requirements

3.2 Phrase Spotting
We evaluated the phrase spotting performance automati-

cally on the first 10.000 paragraphs of a Dutch held-out data
set from Wikipedia. Table 3 shows the results for the default
spotting algorithm of the current DBpedia Spotlight build,
as well as the language-independent FSA-based implemen-
tation and language-dependent OpenNLP-based implemen-
tation of our build.

Language Model Precision Recall F1

Dutch
Lang. dep. 49.45 55.53 52.32
Lang. indep. 48.26 55.01 51.42
Current 8.26 77.17 14.92

Table 3: Phrase spotting evaluation

3.3 Disambiguation
We automatically evaluated the disambiguation perfor-

mance of both builds for Dutch on 28.475 randomly selected
paragraphs from the full held-out data set with only ambigu-
ous annotations. Results are shown in Table 4. MRR (mean
reciprocal rank) indicates n-best performance and No URI
is the percentage of annotations in which the correct URI
was not among the first 20 candidates. Note that the current
build for Dutch is trained on the full Wikipedia data. Our
build is trained on only the training section of the Wikipedia
corpus, excluding the held-out sections. The English results
are measured on an independent test corpus [4].

Language Model Accuracy MRR No URI

Dutch Our build 0.841 0.622 0.067
Dutch Current 0.581 0.432 0.367

English Our build 0.851 0.797 0.074
English Current 0.716 0.688 0.166

Table 4: Disambiguation evaluation

3.4 Internationalized Models
We created models for a number of languages among the

largest Wikipedias. Table 5 presents performance values as
well as the size of the respective input corpus for each of
these languages. As above, we show accuracy, mean recip-
rocal rank and the percentage of annotations for which the
correct URI was not found for the disambiguation sub-task.
Additionally, we include the accuracy Accα of a strong base-
line for each language. The baseline is to always pick the

http://cassandra.apache.org/
http://code.google.com/p/kryo/
https://github.com/jankotek/JDBM3
http://git.io/xvzPGw

Input Performance Phrase Spotting Disambiguation
Language Articles Disk Memory Time/par. Type Pr. Re. F1 Accα Acc MRR No URI

German 1.5m 1.5GB 4.2GB 113ms T, C 43.08 50.10 46.32 0.766 0.771 0.630 0.089
French 1.3m 1.2GB 2.4GB 36ms I, FSA 44.81 45.25 45.02 0.774 0.789 0.677 0.089
Italian 1m 944MB 1.7GB 42ms I, FSA 47.20 50.36 48.72 0.774 0.784 0.680 0.106
Russian 991k 881MB 2GB 20ms I, FSA 40.31 30.62 34.80 0.667 0.680 0.537 0.226
Spanish 980k 950MB 2.2GB 49ms I, FSA 42.12 46.29 44.10 0.753 0.755 0.656 0.138
Hungarian 238k 302MB 0.9GB 14ms I, FSA 41.85 34.07 37.56 0.809 0.833 0.564 0.095
Danish 176k 158MB 0.6GB 27ms T, FSA 46.80 48.27 47.52 0.812 0.813 0.589 0.108

Table 5: Overview of internationalized entity extraction models

most common sense ê = argmaxe count(e, s) for each phrase
using the same candidate mapping as the other algorithms.
For the phrase spotting task, the table shows precision,

recall and F1 score on heldout data, as well as the type of
spotting algorithm used in the system:
Tokenization: T indicates that the system uses a super-

vised OpenNLP tokenization model and I indicates a semi-
supervised tokenizer based on the java.text package.
Spotting algorithm: FSA uses a token-based finite state

automaton to retrieve exact matches, C and NER indicate
the use of OpenNLP models for phrase chunking and named
entity recognition.
The performance values for each model are estimated on a

heldout data set consisting of 6.000 paragraphs randomly se-
lected from the input corpus. When examining the randomly
selected paragraphs, we observed that they are generally
short. It can be expected that a bigger improvement over
the baseline will be achieved when more context is available.
For evaluating disambiguation, we only consider ambiguous
annotations and exclude disambiguation pages.

4. DISCUSSION AND OUTLOOK
In this paper, we presented some challenges encountered

while collecting statistics, handling the necessary data and
performing information extraction tasks that are key to the
process of named entity recognition and disambiguation. We
have evaluated different storage implementations, as well as
approaches using different levels of language-specific knowl-
edge, and discussed their impact on the adaptation of DBpe-
dia Spotlight to other languages. The creation and usage of
optimized custom data structures provided more flexibility
in contrast to Lucene and LingPipe used in previous ver-
sions, which was reflected in the memory footprint and in
the general performance.
The presented experiments show that our newly imple-

mented methods provide improvements in phrase spotting and
disambiguation accuracy as well as time performance and
required space. This is due to more informed methods as
well as a more integrated use of data structures between the
phrase spotting and disambiguation components. Our lin-
guistically motivated phrase spotting method provides slightly
better accuracy than the language-independent method, how-
ever this improvement comes at the cost of speed and ease
of adaptation to new languages. Furthermore, we demon-
strated the ease of internationalization with our system by
creating and evaluating models for Dutch, English, and 7
additional languages.
All of the data and source code used in the experiments are

freely available online. Therefore, the experiments are repro-
ducible with minimal effort, opening the door to strengthen-

ing collaborations within the research community, reaching
out to industry adopters, and further improving the system.
Demonstrations of the systems, documentation of the in-
dexing and internationalization process as well as pointers
to source code and data are available from the supporting
material online.

We believe that entity recognition and linking with mul-
tilingual support will increasingly play a key role in knowl-
edge acquisition, integration and retrieval on the Web. The
ability to fuse information created and shared in different
languages will provide supporting knowledge, contrasting
facts as well as new information that can be seamlessly used
across different geographic regions with little or no language-
barriers. In this work, we provide some steps towards eval-
uating options for implementing such solutions in languages
with a rich set of NLP resources, as well as in resource-poor
languages, in an efficient and accurate manner.

5. ACKNOWLEDGMENTS
Parts of this work were funded by Google Summer of Code

2012 and by the FP7 grant Dicode (GA no. 257184). The
authors would like to thank David de Boer and Gosse Bouma
for help with the Dutch model. We also thank Faveeo and
Globo.com for support and computing resources. Special
thanks to MTA Sztaki (through Mihály Héder) for providing
the necessary computing resources for creating the interna-
tionalized models.

6. REFERENCES
[1] X. Han and L. Sun. A generative entity-mention model

for linking entities with knowledge base. In Proc. of
ACL: Human Language Technologies Vol. 1, 2011.

[2] P. N. Mendes, J. Daiber, R. Rajapakse, F. Sasaki, and
C. Bizer. Evaluating the impact of phrase recognition
on concept tagging. In Proc. of LREC, 2012.

[3] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer.
DBpedia Spotlight: shedding light on the web of
documents. In Proc. of I-SEMANTICS, 2011.

[4] D. N. Milne and I. H. Witten. Learning to link with
Wikipedia. In Proc. of CIKM, 2008.

[5] G. van Noord, G. Bouma, F. van Eynde, and
D. de Kok et al. Large Scale Syntactic Annotation of
Written Dutch: Lassy. 2009.

	Introduction
	Implementation
	Phrase Spotting
	Disambiguation
	Indexing
	Data Storage, Models and Configuration

	Evaluation
	Performance: Runtime and Footprint
	Phrase Spotting
	Disambiguation
	Internationalized Models

	Discussion and Outlook
	Acknowledgments
	References

